3 research outputs found

    Bidirectional Coupling between Astrocytes and Neurons Mediates Learning and Dynamic Coordination in the Brain: A Multiple Modeling Approach

    Get PDF
    In recent years research suggests that astrocyte networks, in addition to nutrient and waste processing functions, regulate both structural and synaptic plasticity. To understand the biological mechanisms that underpin such plasticity requires the development of cell level models that capture the mutual interaction between astrocytes and neurons. This paper presents a detailed model of bidirectional signaling between astrocytes and neurons (the astrocyte-neuron model or AN model) which yields new insights into the computational role of astrocyte-neuronal coupling. From a set of modeling studies we demonstrate two significant findings. Firstly, that spatial signaling via astrocytes can relay a β€œlearning signal” to remote synaptic sites. Results show that slow inward currents cause synchronized postsynaptic activity in remote neurons and subsequently allow Spike-Timing-Dependent Plasticity based learning to occur at the associated synapses. Secondly, that bidirectional communication between neurons and astrocytes underpins dynamic coordination between neuron clusters. Although our composite AN model is presently applied to simplified neural structures and limited to coordination between localized neurons, the principle (which embodies structural, functional and dynamic complexity), and the modeling strategy may be extended to coordination among remote neuron clusters

    A Proposition on Memes and Meta-memes in Computing for Higher-order Learning

    No full text
    In computational intelligence, the term \u27memetic algorithm\u27 has come to be associated with the algorithmic pairing of a global search method with a local search method. In a sociological context, a \u27meme\u27 has been loosely defined as a unit of cultural information, the social analog of genes for individuals. Both of these definitions are inadequate, as \u27memetic algorithm\u27 is too specific, and ultimately a misnomer, as much as a \u27meme\u27 is defined too generally to be of scientific use. In this paper, we extend the notion of memes from a computational viewpoint and explore the purpose, definitions, design guidelines and architecture for effective memetic computing. Utilizing two conceptual case studies, we illustrate the power of high-order meme-based learning. with applications ranging from cognitive science to machine learning, memetic computing has the potential to provide much-needed stimulation to the field of computational intelligence by providing a framework for higher order learning
    corecore